ADAO7YR083

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

20742

This documont has beem

for public relcase and scle Ma
distribution is unlimited. "

_@9 11 30 008

g e e it e e e e

e S Gl

H - .

Y] 1r-155./ ©id, Aprieas7s |
~"" DAAG-53-76C-0138 i
@" "COMPUTING PERIMETERS OF IMAGES D¢ j
/ REPRESENTED BY QUADTREES. V) s G B2

_.-‘-—

g g

(@ I i-IE;an[Samet-\ = C
Co cience Department EZD Ld Y

University of Maryland

1 College Park, MD 20742 :””
‘ - ream e “1 1 ' : 8| !
% : [’) o o~ ’ g / H i ",.
(AMechnien vepts. =
i e ki T |
ABSTRACT

L)

An algorithm is presented for computing the total
perimeter of a binary image represented by a quadtree.
The algorithm explores each segment of the border once
and only once. Analysis of the algorithm shows that
its worst-case average execution time is proportional
: to the product of the log of the image diameter and
- the number of nodes in the tree.

The support of the Defel.se Advanced Research Projects /.gency i
and the U.S. Army Night vision Laboratory under Contract 1
DAAG-53-76C-0132 (DARPA ’irder 3206) is gratefully acknowledged,
as is the help of Kathryn Riley in preparing this paper.

- . The author has benefited greatly from discussions with

PR Charles R. Dyer and Azriel Rosenfeld. He also thanks Pat

E B Young for her help with the figures.

f h‘ T ———,

L 3 r :.u;_ lic relex et L%“ﬂ e ;

E E 3 4 e cand sals: e

—iOution is uplh -
~~"“~\ inlim ited. e

————

1. Introduction i ;
Perimeter computation i3 a basic operation in ihage proces-— |

sing [RK]. The standard algorithms use either an array or a

chain code representation [I'reeman] for the two-valued ("binary")

image whose perimeter is to be computed. 1In this paper we present

an algorithm for computing the total perimeter (i.e., the length

of the chain codes corresponding to the black/white borders in the

image) of a binary image that is represented by a quadtree

([Klinger, DRS, Sametl]).
We assume that the given image is a 2" by 2% array of unit

square "pixels". The quadtree is an approach to image repre-

sentation based on successive subdivision of the array into i

quadrants. In essence, we repeatedly subdivide the array into
guadrants, subquadrants,... until we obtain blocks (possibly
single pixels) which consist entirely of either 1's or @'s. This
process is represented by a tree of out-degree 4 in which the |
root node represents the entire array, the four sons of the root
node represent the quadrants, and the terminal nodes correspond
to those blocks of the array for which no further subdivision is

necessary. For example, Figure 1lb is a block decomposition of the

region in Figure la while Figure lc is the corresponding quad-
tree. In general, ELACK an¢ WHITE square nodes represent r.odes

consisting entirely of 1's and f@'s respectively. Circular nodes,

also termed GRAY nodes, denote non-terminal nodes,

i

T SE e T e S e b5 i

Sections 2-5 present and analyze the algorithm. Included
is an informal description of the algorithm along with moti-
vating considerations. The actual algorithm is given using a

variant of ALGOL 60 [Naur].

Mo,

g

.

5.

2. Definitions and Notation

Let each node in a quadtree be stored as a record contain-
ing six fields. The first five fields contain pointers to the
node's father and its four sons, labeled NW, NE, SE, and SW.
Given a node P and a son I, these fields are referenced as
FATHER(P) and SON(P,I) respectively. At times it is useful to
use the function SONTYPE (P) where SONTYFE(P) = Q iff SON (FATHER
(P),Q) = P. The sixth field, named NODETYPE, describes the
contents of the block of the image which the node represents--
i.e., WHITE if the block contains no 1's, BLACK if the block
contains only 1l's, and GRAY if it contains 0's and 1l's. Alter-
natively, BLACK and WHITE are terminal nodes while GRAY nodes
are non-terminal nodes.

Let the four sides of a node's block be called its N, E, S,
and W sides. They are also termed its boundaries. The spatial
relationships between the various sides are specified by use of

the functions OPSIDE, CSIDE, and CCSIDE. OPSIDE(B) is a side

facing side B; e.g., OPSIDE(E) = W. CSIDE(B) and CCSIDE(B) cor-
respond to the sides adjacent to side B in the clockwise and

counterclockwise directions respectively; e.g., CSIDE(E) = S and

T —

CCSIDE(E) = N. We also define the following predicates and
functions to facilitate the expression of operations involving a

block's quadrants and boundaries. ADJ(B,I) is true if and only

. e bt el R

g A MR A NS WU e T s TSI TR YRR A M A e e are

if quadrant I is adjacent to boundary B of the node's block;
e.g., ADJ(N,NW)' is true. REFLECT(B,I) yields the quadrant

which is adjacent to quadrant I along boundary B of the block

s 2

NE, REFLECT(E,NW) = NE,

represented by I; e.g., REFLECT(W,NW)

REFLECT (N,NW) = SW, and REFLECT(S,NW) SW. QUAD(B,C) is the
quadrant which is bounded by boundaries B and C (if B and C are
not adjacent boundaries, then the value of QUAD(B,C) is undefined);
e.g., QUAD(N,W) = NW. Figure 2 shows the relationship between the
quadrants of a node and its boundaries.

Given a quadtree corresponding to a v by ™ array, we say
that the root node is at level n, and that a node at level i is !
at a distance of n-i from the root of the tree. In other words,
for a node at level i, we must ascend n-i FATHER links to reach

the root of the tree. Note that the farthest node from the root

of the tree is at level 2. A node at level g corresponds to a

single pixel in the image.

NW NE

SW SE

Figure 2. Relationship between a block's four quadrants
and its boundaries.

i
i

3. Algorithm

The perimeter computation algorithm traverses the quadtree
in postorder (i.e., the sons of a node are visited first) and
visits each BLACK-WHITE border segment once and only once.

For each BLACK terminal node, say P, the northern, eastern,
southern, and western adjacencies are explored so that all of
the node's WHITE adjacent neighbors are visited. The result of
each visit is that the length of the border which is shared
between the two adjacent neighbors is included in the value of
the perimeter.

The main procedure is termed PERIMETER and is invoked with
a pointer to the root of the gquadtree representing the image
and an integer corresponding to the log of the diameter of the
image (e.g., n for a v o by gh image array). PERIMETER traverses
the tree and controls the exploration of the adjacencies of each
BLACK node. FIND NEIGHBOR locates a neighboring node of greater
or equal size along a specified side. If the node is on the
edge of the image, then no neighbor exists in the specified
direction and NULL is returned (e.g., border segments CO and CN
in Figure 1lb). If the node is not on the edge of the image and n¢
neighboring BLACK or WHITE node exists satisfying our size cri-
teria, then a pointer to a GRAY node of equal size is returned
(e.g., the eastern border of node C in Figure 1lb). In such a cas:,

procedure SUM_ADJACENT continues the search by examining all WHITE

e

ey

E
3

A S S TP

LSS St

adjacent. neighbors of smaller size and accumulating their lengths
(e.g., block M for the eastern border of node C in Figure 1b).
Note that when the neighboring node is BLACK and is of the same
or greater size, then no contribution is made to the perimeter
by the side of the node currently being examined (e.g., border
segment AB in Figure 1lb). A node having a side on the border

of the image or having a WHITE neighboring node of the same or
greater size makes a contribution to the perimeter equal to the
length of the side of the BLACK node (e.g., border segment AI

in Figure 1b).

An alternative method of computing the perimeter is to apply
the algorithm in [DRS] which converts a guadtree representation
to a chain code and simply sums the lengths of the segments. Our
algorithm is simpler since it does not require the segments to
be traversed in sequence around each border. We need only in-
sure that each border segment is visited once and only once.
This is clearly true since during the tree traversal, the adja-
cencies of each BLACK node are explored at least once; on the
other hand, each border segment is only explored once since it
must adjoin a WHITE node and our algorithm does not explore adja-
cencies of WHITE nodes.

As an example of the application of the algorithm, consider
the image given ﬁn Figure la. Figure 1lb is the corresponding

block decomposition and Figure lc is its quadtree representation

B e

TP 11

§
i
&.

All of tie BLACK nodes have labels rang.ng between A and G
while the WHITE nodes have labels ranging between H and S. The
BLACK nodes are labeled in the order in which their adjacencies
are explored by PERIMETER. WHITE nodes H through Q are labeled
in the order in which they are first visited by the combination
of FPIND NEIGHBOR and SUM _ADJACENT. Thus the adjacencies of
node A have been explored before those wf nodes B, C, etc. The
value of the perimeter is obtained by visiting the border seg-
ments in the order AH, AI, BJ, BK, BL, CI, CM, CN, CO, EL, EP,
FP, GQ, and GM. Assuming n=3 (i.e., blocks D, E, F, G, P, Q, R,
and M are single pixels), the perimeter is 28. Note that nodes
D, R, and S do not contribute to the value of the perimeter

since none of their sides adjoin the border.

BB

e

R N TR T

~ e b A a2 N S A - " ~ ity N PR Ao stttk iAo DM i el g
— ot i e 1 s B R

integer procedure PERIMETER(P,LEVEL) ;

/*find the perimeter of a quadtree rooted at node P which

spans a ZLEVEL by ZLEVEL space*/

begin
node P,Q;
integer LEN, LEVEL;
quadrant I;
side S;
LEN«#;
if GRAY(P) then
begin
for I in {NW,NE,SW,SE} do
LEN<LEN+PERIMETER(SON (P, I) ,LEVEL-1) ;
end
else if BLACK(P) then
begin
for S in {N,E,S,W do
begin
Q- FIND NEIGHBOR(P,S);
LEN“LEN + if NULL(Q) or WHITE(Q) then 2+LEVEL

else if GRAY(Q) then

SUM_ADJACENT(Q,QUAD(OPSIDE(S)),C51DF(S)'

QUAD (OPSIDE (3) ,CCSIDE(S)
LEVE.)
else #;
end;

end;

! return (LEN) ;

s

-

27

have their

in direction S§. Of these 2" '-1 neighbor pairs,

nearest common ancestor at level n, 2l at level n-1,... and

231 .¢ level i+l. For each node at level i having a common

ancestor at level j, the maximum number of nodes that will be

visited by FIND NEIGHBOR and SUM_ADJACENT is

k 1

(4=4) + (§-i-1) + © 2* = 2(§-i-1) + 2%F

k

Il ™ -

0

This is obtained by observing that the common ancestor is at

a distance of j-i and that a node at level i has a maximum of

2i adjacent neighbors (all appearing at level @) . Assuming that
node P is equally likely to occur at any level i and at any of
the 2n_i-l positions at level i, then the average of the maximum

number of nodes visited by FIND NEIGHBOR and SUM_ADJACENT is

n-1 n . ’
r ¢ 2 lpoetaaaatty
i=0 j=i+1 (1)
s =i
£ (2" 1)
i=0

(1) can be rewritten to yield

n-1 n-1-1i Ehy oy
5 Rt T T
i=0 j=0 (2)

i+l

(2i-1)
0

| B3

i

R ———

e G S —— s ~ - - b o i T T -

The numerator of (2) can be simplified as follows:
8 n=1l n-1-i _ n~1 n-1-i & g ‘
; RSt s D L S T P e L ¥
s i=0 3j=0 i=0 §=0
:f n-1 n-1-i :
: i=0 j=0 \2**3 J
. .
j But n-1-i : n-1-i . 3
j=0 2+ 2 4ep 27
1 n-i
= el = s} (4) 1
51 on 2-1 .
Also n-1-i ’
r L =20--2b (5) i
j=0 2J 2 1

Substituting (4) and (5) into (3) yields

n=1 e
5 2" (—1{(2 = =aoe) # 2(D - nl_i))
i=0 \2 2 2
& n;l2n (Zn-l-l-(n-i) & 2n+l—J:_2)
i=0 g g
n-l nel-i n+l i+l
= 23 ~4(n-1}+27 L1 1
i=0 |
n-1 n-1 n-1 .
=2™1 1.4 1 (n-i) # 2™ - 5 2M
i=0 2 i=0 i=0 1
|
e 320 - L)) - BB |, "R, |
on 2
2™ . 4. 20° - 20 4 =112 4 2

= 21 (n41) - 2(n%+n+l) (6

o 2 R W by 1 e - o

4. Analysis
The running time of the perimeter computation algorithm,

measured by the number of nodes visited, depends on the time

spent locating adjacent WHITE nodes and on the size of the quad-
tree. Adjacent WHITE nodes are located by procedures FIND NEIGHBOR
and SUM_ADJACENT. They are invoked once for each BLACK node.

The amount of work performed by these procedures is obtained by
considering the number of nodes that are visited when an adja-
cency is being explored. Recall that we must find the neighbor,
and if it is GRAY, then visit all adjacent WHITE neighbors of
smaller size. 1In the worst case we are at level n-1, with a

GRAY neighbor, and all adjacent neighbors are at level @. In such

a case, we must visit 2" nodes. For example, consider Figure 1b
where n=3 and we wish to visit the blocks adjacent to the block
labeled C (i.e., blocks D, F, G, and M). We must visit the root

of the gquadtree as well as A's neighboring GRAY node and all of

its NW and SW sons--i.e., a complete binary tree of height 2.

In total, 3=8 nodes are visited. Assuming a 2" by 2" randon
image--i.e., a BLACK node is equally likely to appear in any

position and level in a quadtree, we have the following resualt.

Theorem 1l: The average of the maximum number of nodes visited
by each invocation of FIND NEIGHBOR and SUM_ADJACENT is n+1.
Proof: Given a node P at level i and a direction S, there arc

2774 possible positions for node P and a neighbor at level °

node procedure FIND NEIGHBOR(P,S);

/*given node P, return a nqde yhich is adjacent to side S of node P*/
begin
node P,Q;
side S;
if not NULL (FATHER(P)) and ADJ(S,SONTYPE(P)) then
/* find a common ancestor* /
Q+FIND_NEIGHBOR(FATHER(P),S)
else Q+«FATHER(P);
/*follow reflected path to locate the neighbor*/

return (if not NULL(Q) and GRAY(Q) then SON (Q,REFLECT (S ,SONTYPE (™)))

else Q);

end;

integer procedure SUY ADJACENT(P,Ql1,Q2,LEVEL);

/*find all WHITE descendants of node P adjacent to the perimeter -

1

i.e., in quadrants Q1 and Q2, and return the length of their =

begin
node P;
quadrant Q1,0Q2
integer LEVEL;
return (if GRAY (P) then SUM_ADJACENT(SON(P,Ql).Ql,Q2,LEvEL~1v
SUM_ADJACENT(SON(P,QZ),Ql,QZ,LLVL”-?
else if WHITE(P) then 24LEVEL

else f#);

ena;

i

LT

The denominator of (2) can be simplified as follows:

n ¢
$ (2i-1) = 27l (n+1)
i=0
or n ¢
$ (2i-1) = 21l 2 (7)
i=0

Substituting (6) and (7) into (2) yields

2n+l(n+l)-2(n2+n+1) e * s s n2-n
2n+1_n_2 2n+l_n_2

n+1 as n gets large

14

Q.E.D.

It is useful to obtain an upper bound on the size of the quad-
tree in terms of the number of BLACK nodes. Letting B denote

the number of BLACK nodes we have

Lemma 1l: The maximum number of nodes in a quadtree having B
black nodes is 4Bn+l.

Proof: Given B BLACK nodes at level @ there is a maximum of

3B WHITE nodes at level g. At worst there is one GRAY node at
level 1 for every BLACK node and three WHITE nodes at level {,
and at worst three additional WHITE nodes for each such GRAY
node. Thus there exist at most 4B nodes at level 1. Repeating
the same argument for levels 2 through n-1, we have 4Bn nodes.
At level n there is only one node. Therefore, the maximum

number of nodes is 4Bn+l.

Q.E.D.

Sk e Gl e e L b e e e g L e

Canaincag

e A —————
i s O ot
i S a3

We can now prove

Theorem 2: The average worst case execution time of the
perimeter computation algorithm has an upper bound proportional
to the product of the number of BLACK nodes and the log of the
diameter of the image.

Proof: From Theorem 1 we have that for each adjacency involving
a BLACK node, FIND NEIGHBOR and SUM_ADJACENT result in an
average worst case of n+l nodes being visited. There are four
adjacencies for each BLACK node. Thus these two procedures con-
tribute 4B(n+l). From Lemma 1 we have that the number of nodes
in the quadtree is bounded by 4Bntl. However, this quantity cor-
relates with the work performed by procedure PERIMETER since
each node in the quadtree is visited by the traversal. Summing

up these values we have 4B(n+l) + 4Bn+l = 8Bn+4B+l.

Q.EQD.

[DRS]

[Freeman]

[Klinger]

[Naur]

[RK]

[Samet1]

[Samet 2]

179 R W) S 4

6. References

C. R. Dyer, A. Rosenfeld, and H. Samet. Region repre-
sentation: boundary codes from quadtrees. Computer
Science TR-732, University of Maryland, College Park,
Maryland, February 1979.

H. Freeman, Computer processing of line-drawing images,
Computing Surveys 6, 1974, 57-97.

A. Klinger and C. R. Dyer, Experiments in picture repre-
sentation using regular decomposition, Computer Graphics
and Image Processing 5, 1976, 68-105.

P. Naur (Ed.), Revised report on the algorithmic language
ALGOL 60, Communications of the ACM 3, 1960, 299-314.

A. Rosenfeld and A. C. Kak, Digital Picture Processing,
Academic Press, New York, 1976, Section 9.2.1.

H. Samet, Region representation: quadtrees from boundary
codes, Computer Science TR-741, University of Maryland,
College Park, Maryland, March 1979.

H. Samet, Connected component labeling using quadtrees,
Computer Science TR-756, University of Maryland, College
Park, Maryland, April 1979.

< IR ‘4."

>

i e e A

5. Concluding remarks

An algorithm has been presented for computing the total
perimeter of a binary image represented by a quadtree. The
algorithm's execution time has been shown to have an average
worst case time complexity proportional to the product of the
image's diameter and the number of BLACK nodes in the quadtree
representation of the image. It should be clear that if the
image has more than one connected component, the algorithm
returns the total perimeter of all the regions. Similarly, if
holes are present, their boundaries are also included in the
value of the perimeter obtained by this algorithm. Note that
if we first labeled the connected components of the image

[Samet2], then the perimeter o f each boundary could be separ-

ately computed.

The algorithm demonstrates the utility of the quadtree as
a desirable data structure for image representation. Computation
of perimeter is generally achieved by use of a chain code repre-
sentation. We have shown that it can be computed with reasonable

efficiency when the quadtree is used as the data structure.

A TS o Ry . . e -

UNCLASSIFIED 1

© SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) :

y READ INSTRUCTIONS 3

¢ REPORT DOCUMENTA'HON PAGE BEFORE COIIPL‘E!.TTN'G FORM “

f 1. REPORT NUMBER Iz. GOVT ACCESSION NO.| 3. RECIPIENT’'S CATALOG NUMBER

| i
} 3 4. TITLE (and Subtitle) £ ’ ’., Tets S. TYPE OF REPORT & PERIOD COVERED { '7
| & mes 5 |
‘ COMPUTING PAPTERNS OF IMAGES Technical F
REPRESENTED BY. QUADTREES .. Pzaromuu?nc. REPORT NUMBER [E

7. AUTHOR(s) [B CO;TRACT OR GRANT NUMBER(e) F .

Hanan Samet DAAG-53-76C-0138" |4

9. PERFORMING ORGANIZATION NAME AND Aﬂl;llil 10. PROGRAM ELEMENT, PROJECT, TASK
2 AREA & WORK UNIT NUMBERS

Computer Science Department/
University of Maryland
College Park, MD 20742

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
; L April 1979
U.S. Army Night Vision Laboratory
Fort Belvoir, VA 22060 e ke

T4. MONITORING AGENCY NAME & ADDRESS(I! different from Controlling Office) 1S. SECURITY CLASS. (of this report) § 5

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on re aide y and i fy by block ber)
Image processing
Region representation

Cuadtrees
Perimeter
20. ABSTRACT (Continue on aide 11 y end Identily by block number) i :
‘ An algorithm is presented for computing the total perimeter of a-

binary image represented by a quadtree. The algorithm explores "
each segment of the border once and only once. Analysis of the

algorithm shows that its worst-case average execution time is ' :
proportional to the product of the log of the image diameter and é
the number of nodes in the tree. i ¢

— ucmﬁuls PAGE (When Deta EAtersd)

DD , 5" 1473 €oimion oF 1 noV 65 is OBSOLETE

g

B 1K
L
i [e
N
a, SAMPLE IMAGE b, BLOCK DECOMPOSITION OF THE IMAGE
N (a),

§EF P aonR

C. QUADTREE REPRESENTATION OF THE BLOCKS
N (b)),

F16. 1. AN IMAGE, ITS MAXIMAL BLOCKS, AND THE CORRESPONDING QUADTREE. BLOCKS
IN THE IMAGE ARE SHADED.

Bt S it i S 4

g

